Improved Telescopic Nesting for Hurricane Forecasting

Samuel Trahan, Xuejin Zhang Greg Thopmson, Shaowu Bao Tim Marchok, Hua-Ya Chuang, Qingfu Liu, Hualu Pan, Dave Zelinsky Young Kwon, Zhan Zhang, Weiguo Wang Vijay Tallapragada, S. Gopalakrishnan Ligia Bernadet, Brad Ferrier

Telescoping Nesting: What and Why? Sample 27:9:3 Gustav Run

 θ (K) at 650 mbar

- Some areas are more important than others
- Some areas need higher resolution than others

2012 Upgrade: 3km Resolution

- Hurricanes need higher resolution:
 - Need <4km for satellite products
 - <5km to represent wind maximum</p>
 - <5km for mesovortices, vorticity waves
 - <3km for resolved convection</p>
 - <1km for vorticity sheets</p>
- Cannot do 3km everywhere. Too expensive!

27:9:3 2012 Implementation Problems Encountered

- Drastic improvement to track, improved structure, but *no improvement to intensity*
- Problems:
 - Domains did not properly follow storm
 - 3km domain too small
 - physics timestep too large
 - Convection scheme differences degrade synthetic satellite products.

27:9:3 Planned 2013 Implementation Large Improvement

- Large 3km domain, smaller timesteps, better nest motion algorithm, improved nest-parent interpolation.
- and much more

Nest Motion Trouble

MSLP Tracking No Longer Reliable

- 3km can resolve mesolows, vorticity sheets
 - Stronger localized MSLP values
- Bad MSLP calculation method

Nest Motion Solution Membrane MSLP

 $dP = -\rho g dz$

- Re-express atmosphere as ocean world on pressure levels
- Extrapolate virtual temperature on pressure surfaces
- Smooth atmosphere
- Integrate to get P(z=0)

Nest Motion Solution Nine Field Tracker

- MSLP alone is not enough
- Track nine thermodynamic and wind fields
 - Used in NCEP Tracker for storm track and intensity
 - Parallelized, modified for E grid rotated lat-lon

New Nest-Parent Interpolation (also parent to nest) Old Method: Two Step Interpolation

New Nest-Parent Interpolation (also parent to nest)

- Allows non-bulk microphysics
 - Tested with Thompson and WSM6 schemes
- Faster
- Improved upscale interpolation

Larger Domain, Smaller Timesteps

- 5x5 degree grid too small go to 6x6 degree
 - 50% more gridpoints (expensive!)
 - Affordable on new Intel/Linux WCOSS machines.
- Smaller physics timesteps:
 - 27km: 180 sec -> 90 sec
 - 9km: 180 sec -> 90 sec
 - 3km: 180 sec -> 30 sec

Improved Synthetic Satellite Products

- Post includes convective rain when calculating synth. sat.
- Result: discontinuities in satellite products.
- Meso-SAS convection scheme (work in progress)
 - Degradation of intensity skill
 - Working on fixing this

Conclusion

- Improved telescopic nesting in planned next HWRF model:
 - Larger domain, smaller timesteps, better nest motion algorithm, new interpolation schemes
 - Drastic improvements to intensity skill
- Developing better convection scheme to fix satellite product issues.